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Cascading Network Failure

To predict cascading failure in large-scale networks, solid understanding of
propagations of failures in small-scale networks is vital.

This allows optimal redistribution of loads and network design.

Ahmed Attia Supervised by: Mihai Anitescu Derivative-based solution of the optimization problem(s) in DeMarco’s model



Problem Formulation
Derivative Information

Results
Questions

Cascading Network Failure

To predict cascading failure in large-scale networks, solid understanding of
propagations of failures in small-scale networks is vital.

This allows optimal redistribution of loads and network design.

Ahmed Attia Supervised by: Mihai Anitescu Derivative-based solution of the optimization problem(s) in DeMarco’s model



Problem Formulation
Derivative Information

Results
Questions

Network Model(s): I

Eight-node, Eleven-branch circuit is used as a toy model.

Model state

x =

φq
γ

 ∈ R26 (1)

where

1) φ is a vector of nodal flux differences ( φ ∈ R7),
2) q is the vector of nodal charges on capacitors ( q ∈ R8),
3) γ is the failure state of branches ( γ ∈ R11),
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Network Model(s): II

DeMarco’s original model equations

dφ = ET
r C−1q dt (2)

dq =
(
−ErHrL

−1HT
r φ− GC−1q + iin

)
dt, (3)

Stochastic Version of the model[
dφ
dq

]
= M + P + U (4)

=

[
ET
r C−1q(t)dt

0

]
+

[
0

−ErHrL
−1HT

r φ(t)dt

]
+

[
0

−GC−1q(t)dt +
√

2Gτ dWt

]
.

- iin : the current input, τ : system’s temperature,
- C , Er , Hr , L, G : constant matrices,
- M, P, U : system’s mass, potential, Ornstein Uhlenbeck process.
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Time stepping: A Splitting Solver

The integrator is a composition of maps[
φ(t)
q(t)

]
= P t

2
◦M t

2
◦Ut ◦M t

2
◦ P t

2

([
φ(0)
q(0)

])
; (5)

Mt

([
φ(0)
q(0)

])
=

[
φ(0) + ET

r C−1q(0)t
q(0)

]
, (6)

Pt

([
φ(0)
q(0)

])
=

[
φ(0)

q(0)− ErHrL
−1HT

r φ(0)t

]
, (7)

Ut

([
φ(0)
q(0)

])
=

[
φ(0)

e−GC−1tq(0) +
√
τC
(
I − e−2GC−1t

)
d

]
, (8)

Where t is the step size, and d is the stochastic force.
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Optimization problems

Since we are interested in failure, we ask how the white noise might steer the system
towards increasing energy.

The exact problem:

min
d1,d2,...,dN

J (d1,d2, . . . ,dN) =
N∑
i=1

dTi di (9)

subject to
max (EN) > ε. (10)

Solving the exact problem requires solving one optimization problem for each line.

A proxy problem: replace constraint with:

ITNEN > ε, (Or ET
N EN > ε) (11)

where EN is the energy function, and IN is a vector of all ones.
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Energy Function

EN(φN) = EN





(φN)1
(φN)2
(φN)3
(φN)4
(φN)5
(φN)6
(φN)7




=



1
2L

−1
1 γ1 (−(φN)1)2

1
2L

−1
2 γ2 (−(φN)2)2

1
2L

−1
3 γ3 ((φN)2 − (φN)3)2

1
2L

−1
4 γ4 ((φN)1 − (φN)3)2

1
2L

−1
5 γ5 ((φN)3 − (φN)4)2

1
2L

−1
6 γ6 ((φN)3 − (φN)5)2

1
2L

−1
7 γ7 ((φN)1 − (φN)5)2

1
2L

−1
8 γ8 ((φN)4 − (φN)5)2

1
2L

−1
9 γ9 ((φN)4 − (φN)7)2

1
2L

−1
10 γ10 ((φN)5 − (φN)6)2

1
2L

−1
11 γ11 ((φN)6 − (φN)7)2



(12)
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Probability of Failure(s)

We can compute the probability of one failure (at time tN) from optimal noise vectors
d1,d1, . . .dN via

P(Failure|d1,d1, . . .dN) = e−
∑N

i=1 dTi di
τ (13)

Multiple failure is an enumeration problem solved by exhaustive search.
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Derivative Information: I

We have reformulated the splitting solver as linear discrete map:

xi = Axi−1 + Bdi , (14)

The blocks of A are:

A1,1 = I + (ET
r C−1)(I + e−GC−1h)(−ErHrL

−1HT
r )(

h2

4
) (15)

A1,2 = (ET
r C−1)(I + e−GC−1h)(

h

2
) (16)

A2,1 =

(
(−ErHrL

−1HT
r )(ET

r C−1)(
h2

4
) + I

)
(I + e−GC−1h)(−ErHrL

−1HT
r )(

h

2
) (17)

A2,2 = (−ErHrL
−1HT

r )(ET
r C−1)(I + e−GC−1h)(

h2

4
) + (e−GC−1h) (18)

A1,3 = A2,3 = A3,1 = A3,2 = 0; A3,3 = I (19)
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Derivative Information: II

B reads

B =

 (ET
r C−1)

√
τC (I − e−2GC−1h)(h2 )(

(−ErHrL
−1HT

r )(ET
r C−1)(h

2

4 ) + I
)√

τC (I − e−2GC−1h)

0

 (20)

the derivatives read

∇xi−k
xi = Ak ∀k = 1, 2, . . . , i − 1 (21)

∇di−k
xi = AkB ∀k = 0, 1, . . . , i − 1 (22)

∇diEN = (∇φNEN)(∇diφN)

= (ENφ)(∇diφN) ∀i = 1, 2, . . . ,N (23)

ENφ = dEN
dφN
∈ R11×7 is the Jacobian of the energy functional w.r.t flux differences.
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Derivative Information: III

Gradient of the cost function:

∇[dT1 ,d
T
2 ,...,d

T
N ]

TJ = 2


d1
d2
d3
...
dN

 . (24)

Gradient of the constraint(s):

∇φN

(
ITNEN

)
= ET

NφIN ; ∇φN

(
ET
N EN

)
= 2


(∇d1EN)T EN

(∇d2EN)T EN

...

(∇dNEN)T EN

 (25)
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Results I: Probability of failure(s)

(a) One failure (b) Two failures (c) Three failures (d) Four failures

Figure: Probability of line failure(s). One, two, three, and four failures are plotted.
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Results III: Probability of failure(s)

(a) One failure (b) Two failures

Figure: Probability of line failure(s) on higher resolution grid
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Results IV: Probability of failure(s)

(a) Simulation time = 0.5 (b) Simulation time = 1

Figure: Relation between probability of branch failures and system’s temperature.
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Results V: Computational Time

Figure: CPU-time of the optimization step for one failure case with and without derivative
information.
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Thanks

Questions?
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